A Survival Guide to Geoengineering
Despite its potential to trigger conflict, geoengineering will likely be part of the global response to climate change. Be prepared.
By Jamais Cascio
Illustration: Mark Thoburn
The idea of geoengineering has been around for some time—often imagined in science fiction and futurist tomes as giant orbiting mirrors blocking the sun. But as the dangers of global warming have become more evident, while efforts to reduce carbon emissions continued to stall, the concept has moved from the scientific fringes to the mainstream.The tumultuous outcome of the Copenhagen summit drives home two clear facts: The political struggles around how we respond to global climate disruption are enormously complex—and the resulting delays are bringing us dangerously close to disaster.
This disaster may not unfold in the way we expect. Accelerating changes to the global climate may render even the most aggressive carbon reductions insufficient. But there’s a good chance that the action taken will be in the form of geoengineering, or the intentional modification of geophysical systems to reduce the impacts of climate change.
However, the clashes around geoengineering will make COP15 look amicable. Done carelessly,geoengineering could cause unintended environmental damage. It could also undermine the health and security of millions of people, and drive political wedges between powerful nations. Geoengineering could even push us to the brink of war.
While we know geoengineering would be enormously risky, we’re likely to try it anyway. We can’t eliminate the risks entirely, but if we act wisely, we can make the risks more manageable. Here, I lay out a few ideas for making sure that any geoengineering efforts are done in ways that reduce the risks of both environmental harm and political conflict.
Risky Business
The idea of geoengineering has been around for some time—often imagined in science fiction and futurist tomes as giant orbiting mirrors blocking the sun. But as the dangers of global warming have become more evident, while efforts to reduce carbon emissions continued to stall, the concept has moved from the scientific fringes to the mainstream.
Nobel Prize-winning scientists like Paul Crutzen have openly endorsed research into geoengineering—not as a substitute for carbon reductions, but as a stopgap measure to prevent runaway catastrophe. Reports from respected scientific bodies (such as the U.K.’s Royal Society and the American Meteorological Society) have cautiously endorsed research into geoengineering.
The concept is even gaining some popular visibility, appearing in The Atlantic Monthly and the 2009 pop-economics book SuperFreakonomics. It was also the focus of an article I wrote for the Wall Street Journal.
The current version of geoengineering has dispensed with the space mirrors, adopting a variety of more down-to-earth measures. One proposal would seed the oceans with iron to trigger algae blooms, which pull carbon dioxide from the atmosphere (initial experiments were unsuccessful, but research continues). Another would cool the atmosphere through the use of massive vortexes, mixing colder air from high up with the warmer air near the surface.
The plan that has received the most attention is one where megatons of sulfur dioxide particles would be pumped into the stratosphere, causing a slight dimming of incoming sunlight, cooling the planet by a few degrees. As outlandish as that might sound, it’s an idea that has worked in nature—it’s one of the side effects of a volcanic eruption.
As the most feasible geoengineering proposals do nothing about rising carbon levels, they aren’t considered solutions for global warming. They’re just temporary fixes meant to delay the worst heat-related impacts while the world completes its sluggish transition from fossil fuels. There are currently no known large-scale geoengineering projects underway. Yet, a growing number of scientists support the idea of researching ways to use geoengineering in a global warming crisis.
The appeal of such plans is obvious, as is the environmental risk. Nations desperate to do something about imminent climate disaster would readily embrace mechanisms to slow the disaster’s onset. But the sheer complexity of the ocean-atmosphere system almost guarantees that interventions on this kind of scale will have unexpected and unwanted consequences.
Page 1 | 2
Yes, it's that time... geoengineering is starting to seem inevitable, time to learn the ins and outs.